Skip to main content

The Granger Causality Effect between Cardiorespiratory Hemodynamic Signals

  • Conference paper
Forging Connections between Computational Mathematics and Computational Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 124))

Abstract

Granger causality (GC) is one of the most popular measures to reveal causality influence of time series based on the estimated linear regression model and has been widely applied in economics and neuroscience due to its reliability, clarity, and robustness.

Granger causality has recently received increasing attention to study causal interactions of neurophysiological data; in this chapter we have developed a model of causality between the respiratory, hemodynamic, and cardiac signals, more specifically, a study based on the Granger causality between three ECG leads, blood pressure, central venous pressure, pulmonary arterial pressure, respiratory impedance, and airway CO2. We selected 187 patients of 250 for our study, taken from Montreal General Hospital/MF (Massachusetts General Hospital/Marquette Foundation) databases. These signals are ideal for understanding causality and coupling (unidirectional or bidirectional).

In this approach we aim to analyze and understand the interactions between the signals mentioned above, and identify the significance of this interaction. The originality of this chapter is the number of variables selected for the study. Unlike the majority of studies that are conducted only with two variables, our study is multidimensional. The main advantage of a multidimensional and multivariable model is to solve a myriad of problems which is not the case in the two-dimensional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granger C.W.J.: Investigating causal relations by econometric and cross-spectral methods. Econometrica, 424–438 (1969)

    Google Scholar 

  2. Hong, Y., Liu, Y., Wang, S.: Granger causality in risk and detection of extreme risk spillover between financial markets. J. Econ. 150(2), 271–287 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mokhov, I. I., Smirnov, D.A.: El Nino-Southern oscillation drives North Atlantic oscillation as revealed with nonlinear techniques from climatic indices, Geophys (2006)

    Google Scholar 

  4. Triacca, U.: Is Granger causality analysis appropriate to investigate the relationships between atmospheric concentration of carbon dioxide and global surface air temperature? Theor. Appl. Climatol. 81, 133–135 (2005)

    Article  Google Scholar 

  5. Diks, C., Mudelsee, M.: Redundancies in the Earth’s climatological time series. Phys. Lett. A 275, 407–414 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pierre-Olivier, A., Olivier, J.J. Michel.: On directed information theory and Granger causality graphs. J. Comput. Neurosci. 7–16 (2011)

    Google Scholar 

  7. Carolin Ligges, M., Ungureanu, M., Ligges, H., Witte: Understanding the time variant connectivity of the language network in developmental dyslexia: new insights using Granger causality. J. Neural. Transm. 529–543 (2010)

    Google Scholar 

  8. Xiang, Li., Kaiming, Li., Lei, G., Chulwoo, L., Tianming, L.: Fiber-centered granger causality analysis. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011. Lect. Notes. Comput. Sci. 6892 251–259 (2011)

    Google Scholar 

  9. Pereda, E., Quiroga, R.Q., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 1–37 (2005)

    Google Scholar 

  10. Yifan, Z., Steve, A., Billings, Hua-Liang, W., Ptolemaios, G., Sarrigiannis.: A parametric method to measure time-varying linear and nonlinear causality with applications to EEG data. IEEE. 1–7 (2013)

    Google Scholar 

  11. Florin, E., Gross, J., Pfeifer, J., Fink, G.R., Timmermann, L., Reliability of multivariate causality measures for neural data. J. Neurosci. Methods. 344–358, (2011)

    Google Scholar 

  12. Winfried, S., Vera, L., Iris-Tatjana, K., Nathan, W., Thomas, E.: Age-related changes in neural functional connectivity and its behavioral relevance. BMC Neurosci. 2–11 (2012)

    Google Scholar 

  13. Schad, A., Nawrath, J., Jachan, M., Henschel, K., Spindeler, L., Timmer, J., Schelter, B.: Approaches to the detection of direct directed interactions in neuronal networks. Springer Ser. Comput. Neurosci. 2, 43–64 (2009)

    Google Scholar 

  14. Yang, C., Le Bouquin Jeannès, R., Faucon, G., Wendling, F.: Detecting causal interdependence in simulated neural signals based on pairwise and multivariate analysis. 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, August 31–September 4, 162–169 (2010)

    Google Scholar 

  15. Laura, A., Hovagim, B., Febo, C., Donatella, M., Maria, G.M., Fabrizio, De Vico, F., Alfredo, C., Serenella, Salinari, Fumikazu, Yoko, Y., Pablo, M., Andrzej, C., Andrea, T., Fabio, B.: Estimate of causality between independent cortical spatial patterns during movement volition in spinal cord injured patients. Brain Topogr. 19(3), 107–123 (2007)

    Article  Google Scholar 

  16. Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., del-Pozo, F.: HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Springer, Philadelphia (2013)

    Google Scholar 

  17. David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth, C., Depaulis, A.: Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 6, 2683–2697 (2008)

    Article  Google Scholar 

  18. Paolo, Z., Gianna, M.T., Elisa, S., Anna, B., Fabrizio, B., Nivedita, A., Eugene, G.: The human brain pacemaker: synchronized infra-slow neurovascular coupling in patients undergoing non-pulsatile cardiopulmonary bypass. Neuroimage 72, 10–19 (2013)

    Article  Google Scholar 

  19. Ge, T., Kendrick, K., Feng, J.: A novel extended granger causal model approach demonstrates brain hemispheric differences during face recognition learning. PLoS Comput. Biol. 5, e1000570 (2009)

    Article  MathSciNet  Google Scholar 

  20. Ge, T., Feng, J., Grabenhorst, F., Rolls, E.T.: Componential Granger causality and its application to identifying the source and mechanisms of the top-down biased activation that controls attention to affective vs sensory processing. Neuroimage 59, 1846–1858 (2012)

    Article  Google Scholar 

  21. Palu, S.M., Stefanovska, A.: Phys. Rev. E. 67 055201R (2003)

    Google Scholar 

  22. Verdes, P.F.: Phys. Rev. E. 72(2) 026222 (2005)

    Google Scholar 

  23. Faes, L., Porta, A., Cucino, R., Cerutti, S., Antolini, R., Nollo, G.: Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals. Biol. Cybern. 90, 390–399 (2004)

    Article  MATH  Google Scholar 

  24. Faes, L., Widesott, L., Del Greco, M., Antolini, R., Nollo, G.: Causal cross-spectral analysis of heart rate and blood pressure variability for describing the impairment of the cardiovascular control in neurally mediated syncope. IEEE Trans. Biomed. Eng. 53, 65–73 (2006)

    Article  Google Scholar 

  25. Nollo, G., Faes, L., Porta, A., Antolini, R., Ravelli, F.: Exploring directionality in spontaneous heart period and systolic pressure variability interactions in humans: implications in the evaluation of baroreflex gain. Am. J. Physiol. Heart Circ. Physiol. 288, 1777–1785 (2005)

    Article  Google Scholar 

  26. Nollo, G., Faes, L., Porta, A., Pellegrini, B., Ravelli, F., Del Greco, M., Disertori, M., Antolini, R.: Evidence of unbalanced regulatory mechanism of heart rate and systolic pressure after acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 283, 1200–1207 (2002)

    Article  Google Scholar 

  27. Pereda, E., de La Cruz, D.M., De Vera, L., Gonzalez, J.J.: Comparing generalized and phase synchronization in cardiovascular and cardiorespiratory signals. IEEE Trans. Biomed. Eng. 52, 578–583 (2005)

    Article  Google Scholar 

  28. Giandomenico, N., Michela, M., Walter, M., Roberta C., Luca F.: Assessment of a prototype equipment for cuffless measurement of systolic and diastolic arterial blood pressure. J. Electrocardiol. 44(2) (2010). doi: 10.1016/j.jelectrocard

    Google Scholar 

  29. Faes, L., Nollo, G., Porta, A.: Information based detection of nonlinear Granger causality in multivariate processes via a non-uniform embedding technique. Phys. Rev. E. 83, 051112 (2011)

    Article  Google Scholar 

  30. Hlavackova-Schindler, K., Palus, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-heoretic approaches in time series analysis. Phys. Rep. 441, 1–46 (2007)

    Article  Google Scholar 

  31. Granger, C.W.J.: Testing for causality. A personal viewpoint. J. Econ. Dyn. Control 2, 329–352 (1980)

    Article  MathSciNet  Google Scholar 

  32. Malliani, B.: A principles of cardiovascular neural regulation in health and disease. Kluwer, Norwell (2000)

    Book  Google Scholar 

  33. Riedl, M., Suhrbier, A., Stepan, H., Kurths, J., Wessel, N.: Short-term couplings of the cardiovascualr system in pregnant women suffering from pre-eclampsia. Phil. Trans. Royal Soc. A. 368, 2237–2250 (2010)

    Article  Google Scholar 

  34. Kaminski, M., Ding, M., Truccolo, W.A., Bressler, S.: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145–157 (2001)

    Article  MATH  Google Scholar 

  35. Wiener, N.: The theory of prediction. In: Beckenbach, E.F. (ed.) Modern mathematics for engineers. McGraw-Hill, New York (1956)

    Google Scholar 

  36. Laude, D., Elghozi, J.L., Girard, A., Bellard, F., Bouhaddi, M., Castiglioni, P., Cerutti, C., Cividjian, A., di Rienzo, M., Fortrat, J.O., Janssen, B., Karemaker, J.M., Leftheriotis, G., Parati, G., Persson, P.B., Porta, A., Quintin, L., Regnard, J., Rudiger, H., Stauss, H.M.: Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am. J. Physiol. 286, 226–231 (2004)

    Google Scholar 

  37. Luca, F., Giandomenico, N., Chon, K.I.H.: Assessment of granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann. Biomed. Eng. 36(3), 381–395 (2008). doi:10.1007/s10439-008-9441-z

    Article  Google Scholar 

  38. Xiao, X., Mullen, T.J., Mukkamala, R.: System identification: a multi signal approach for probing neural cardiovascular regulation. Physiol. Meas. 26, 41–71 (2005)

    Article  Google Scholar 

  39. http://www-timc.imag.fr/article886.html

    Google Scholar 

  40. Yelda, A., Tara, L., Alvarez, Suril, G., Paul, A., Taylor, Bharat, B.: Functional connectivity in vergence and saccade eye movement tasks assessed using granger causality analysis. 33rd Annual International Conference of the IEEE EMBS, Boston August 30–September 3. 8114–8117 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Ghouali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghouali, S., Feham, M., Ghouali, Y.Z. (2016). The Granger Causality Effect between Cardiorespiratory Hemodynamic Signals. In: Chen, K., Ravindran, A. (eds) Forging Connections between Computational Mathematics and Computational Geometry. Springer Proceedings in Mathematics & Statistics, vol 124. Springer, Cham. https://doi.org/10.5176/2251-1911_CMCGS14.50_23

Download citation

Publish with us

Policies and ethics